Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Front Med (Lausanne) ; 10: 1090737, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2264287

RESUMEN

Introduction: NRAS mutations are common in melanoma and confer a worse prognosis. Although most patients with metastatic melanoma receive immune checkpoint inhibitors (ICIs), the impact of NRAS mutational status on their efficacy remains under debate. Methods: We performed a comprehensive literature search across several large databases. Inclusion criteria were trials, cohorts, and large case series that analyzed the primary outcome of objective response rate by NRAS mutational status in patients with melanoma treated with any line of ICI. At least two reviewers independently screened studies using Covidence software, extracted data, and assessed risk of bias. Standard meta-analysis was performed in R with sensitivity analysis and tests for bias. Results: Data on 1770 patients from ten articles were pooled for meta-analysis, and the objective response rate to ICIs was calculated to compare NRAS-mutant and NRAS-wildtype melanoma. The objective response rate was 1.28 (95% confidence interval: 1.01-1.64). Sensitivity analysis identified the study by Dupuis et al. with influential impact on the pooled effect size and heterogeneity, favoring NRAS-mutant melanoma. Discussion: In this meta-analysis evaluating the impact of NRAS mutational status on objective response to ICIs in metastatic melanoma, NRAS-mutant cutaneous melanoma demonstrated an increased likelihood of partial or complete tumor response, relative to NRAS-wildtype cutaneous melanoma. Genomic screening for NRAS mutations in patients with metastatic melanoma may improve predictive ability when initiating ICIs.

2.
J Natl Compr Canc Netw ; 20(2): 160-166, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2119821

RESUMEN

BACKGROUND: Most safety and efficacy trials of the SARS-CoV-2 vaccines excluded patients with cancer, yet these patients are more likely than healthy individuals to contract SARS-CoV-2 and more likely to become seriously ill after infection. Our objective was to record short-term adverse reactions to the COVID-19 vaccine in patients with cancer, to compare the magnitude and duration of these reactions with those of patients without cancer, and to determine whether adverse reactions are related to active cancer therapy. PATIENTS AND METHODS: A prospective, single-institution observational study was performed at an NCI-designated Comprehensive Cancer Center. All study participants received 2 doses of the Pfizer BNT162b2 vaccine separated by approximately 3 weeks. A report of adverse reactions to dose 1 of the vaccine was completed upon return to the clinic for dose 2. Participants completed an identical survey either online or by telephone 2 weeks after the second vaccine dose. RESULTS: The cohort of 1,753 patients included 67.5% who had a history of cancer and 12.0% who were receiving active cancer treatment. Local pain at the injection site was the most frequently reported symptom for all respondents and did not distinguish patients with cancer from those without cancer after either dose 1 (39.3% vs 43.9%; P=.07) or dose 2 (42.5% vs 40.3%; P=.45). Among patients with cancer, those receiving active treatment were less likely to report pain at the injection site after dose 1 compared with those not receiving active treatment (30.0% vs 41.4%; P=.002). The onset and duration of adverse events was otherwise unrelated to active cancer treatment. CONCLUSIONS: When patients with cancer were compared with those without cancer, few differences in reported adverse events were noted. Active cancer treatment had little impact on adverse event profiles.


Asunto(s)
COVID-19 , Neoplasias , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Neoplasias/tratamiento farmacológico , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA